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Abstract9

We study the problem of collaborative tree exploration introduced by Fraigniaud, Gasieniec, Kowalski,10

and Pelc [10] where a team of k agents is tasked to collectively go through all the edges of an unknown11

tree as fast as possible and return to the root. Denoting by n the total number of nodes and by D12

the tree depth, the O(n/ log(k) + D) algorithm of [10] achieves a O(k/ log(k)) competitive ratio with13

respect to the cost of offline exploration which is at least max {2n/k, 2D}. Brass, Cabrera-Mora,14

Gasparri, and Xiao [1] study an alternative performance criterion, the competitive overhead with15

respect to the cost of offline exploration, with their 2n/k + O((D + k)k) guarantee. In this paper,16

we introduce ‘Breadth-First Depth-Next’ (BFDN), a novel and simple algorithm that performs17

collaborative tree exploration in 2n/k + O(D2 log(k)) rounds, thus outperforming [1] for all values of18

(n, D, k) and being order-optimal for trees of depth D = o(
√

n). Our analysis relies on a two-player19

game reflecting a problem of online resource allocation that could be of independent interest. We20

extend the guarantees of BFDN to: scenarios with limited memory and communication, adversarial21

setups where robots can be blocked, and exploration of classes of non-tree graphs. Finally, we22

provide a recursive version of BFDN with a runtime of Oℓ(n/k1/ℓ + log(k)D1+1/ℓ) for parameter23

ℓ ≥ 1, thereby improving performance for trees with large depth.24
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1 Introduction36

Problem setting. A team of robots1, initially located at the root of an unknown tree, is37

tasked to collectively go through all the edges of a tree as fast as possible and then return to38

the root. At each round, the robots move synchronously along one incident edge to reach a39

neighbour, thereby discovering new adjacent edges. Following [10], we consider two distinct40

communication models. The complete communication model, in which communications41

1 the term “robots” is often preferred over “agents” in line with the initial work of [10].
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are unrestricted and consequently the team takes decisions in a centralized fashion. The42

write-read communication model, in which robots communicate through whiteboards that43

are located at all nodes and must thus take decisions in a distributed fashion.44

Main results. In this paper, we present a simple and novel algorithm that achieves collabo-45

rative tree exploration with k agents in 2n
k + D2(min{log(k), log(∆)} + 3) rounds for any46

tree with n nodes, depth D and maximum degree ∆. This algorithm can be implemented in47

the complete communication model and the write-read communication model.48

The algorithm is called “Breadth-First Depth-Next” (abbreviated BFDN) and the behaviour49

of the robots can be described synthetically as follows: when located at the root, a robot is50

sent to the highest unexplored edge (as in a breadth-first search). Upon arrival, the robot51

changes behaviour until it reaches the root again, it goes through unexplored edges when52

adjacent to one and goes up towards the root otherwise (as in a depth-first search).53

Our analysis involves a simple zero-sum two-player game with balls in urns. An immediate54

application of this analysis is in resource allocation in the face of uncertainty. Given k workers55

and k (parallelizable) tasks requiring each an unknown amount of work, we show that the56

strategy of reassigning idle workers to the least crowded task is competitive in terms of57

number of times a worker will have to switch between tasks. More precisely, we show that58

this number is at most k log(k) + 2k.59

The BFDN algorithm is easy to implement and we provide it with extensions to more60

complex settings, such as i) exploration of specific classes of non-tree graphs, ii) scenarios61

with constrained communications and memory, and iii) setups where an adversary chooses62

at each time step which robots are allowed to move. Finally, in an attempt to improve63

dependence in the tree depth D, we propose BFDNℓ, a recursive version of BFDN in the complete64

communication model that explores the tree in time Oℓ

(
n

k1/ℓ + min{log(k), log(∆)}D1+1/ℓ
)

65

where ℓ ≥ 1 is some constant provided as input.66

Useful context and related works. In the case of a single robot, the “Depth First Search”67

(DFS) algorithm is optimal for traversing the edges of a tree. It can be implemented both68

offline (the tree is known in advance) and online (edges are revealed when reached). One way69

to describe DFS in an online fashion is to have the robot go through an adjacent unexplored70

edge if possible and go up towards the root otherwise. After 2(n− 1) rounds, where n is the71

number of nodes, all edges have been traversed (twice) and the robot is at the root.72

In the multi-robot setting, i.e. with k ≥ 2, traversing all the edges of a tree in an offline73

manner requires at least max{2n/k, 2D} ≥ n/k + D synchronous rounds [7, 13]. This is74

because every edge has to be traversed in both directions and some robot has to reach the75

deepest node before returning to the root. A simple algorithm [7, 13] matches this bound76

up to a factor 2, with a runtime of at most 2(n/k + D): consider a depth-first search path77

from the root of length 2(n − 1), and divide it in k segments each of length ⌈2(n− 1)/k⌉,78

then assign one robot to reach and traverse each segment. The optimal offline k-traversal is79

NP-hard to compute as [10] gave a reduction from 3-PARTITION to this problem.80

To analyze the online problem (i.e. collective tree exploration), the literature initially81

focused on the competitive ratio which is the worst-case ratio between the cost an online82

algorithm and the optimal offline algorithm. For an online algorithm Ak using k ≥ 2 robots,83

this ratio is defined up to a constant factor as maxn,D∈N maxT ∈T (n,D) Runtime(Ak, T )/(n/k+84

D) where T (n, D) denotes the set of all trees with n nodes and depth D. The algorithm85

proposed initially by [10] CTE (Collective Tree Exploration) runs in O( n
log k + D) rounds for86

any tree T ∈ T (n, D) and therefore has a competitive ratio of O( k
log k ). Furthermore, it can87
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be implemented in the write-read communication model [10]. It was later shown by [11] that88

the competitive analysis of CTE is tight as they provided a simple construction of a tree with89

n = kD edges that CTE would take Dk
log2(k) time-steps to explore. To date, no algorithm is90

known to have a better competitive ratio than CTE, while the best lower-bound known on91

the competitive ratio, for deterministic exploration algorithms, is in Ω( log k
log log k ) by [9].92

The limited progress on the analysis of the competitive ratio as a function of k led most93

subsequent works to investigate algorithms with super-linear dependence in (n, D), usually94

assuming complete communication [13, 1, 8, 6, 5, 11]. In this spirit, [13] derived a recursive95

algorithm called Yo* that runs in O(2O(
√

log D log log k) log(k)(log(k) + log(n))(n/k + D))96

rounds. On the other hand, [1] proposed a novel analysis of CTE yielding a guarantee of97

2n
k +O((k+D)k), displaying optimal dependence in n at the cost of large additive dependence98

in (k, D). The algorithm we propose with its guarantee of 2n
k +O(D2 log(k)) complements99

this line of work. Our guarantee yields a strict improvement over [1] for all values of (n, k, D),100

and improves upon CTE and Yo∗ for the specific range of parameters as depicted in Figure 1.

𝐷

𝑛

𝑒log 𝑘 2

BFDN

BFDN

CTE

YO*CTE

BFDNℓ

𝑒𝑘

Figure 1 Regions of (n, D) where either of CTE, Yo∗, BFDN and BFDNℓ has the best runtime
guarantee. The runtime of algorithm Yo* was simplified to improve readability. ℓ must satisfy
ℓ ≤ cst(log k/ log log k). No trees defined in shaded region n ≤ D. See Appendix A for details.

101

Collaborative tree exploration has also been studied under additional assumptions. For102

example, for trees which can be embedded in the 2-dimensional grid, [8] obtained an algorithm103

running in O(
√

D( n
k + D)) rounds. The setting where the number of robots k is very large,104

specifically k ≥ Dnc for some constant c > 1, was also investigated by [5]. Assuming global105

communication, their algorithm achieves exploration in c
c−1 D + o(D) rounds. Interestingly,106

their guarantees also apply to the challenging and less studied collaborative graph exploration107

problem; see also [1, 2].108

Open directions. In line with [1], our work advocates for the study of the competitive109

overhead of collaborative exploration in complement to its competitive ratio. Recently [6]110

showed that (deterministic) collaborative exploration with k = n requires at least Ω(D2),111

implying that no algorithm can have a 2n
k +O(Dc) guarantee for c < 2. On the other hand,112

a simple algorithm explores any tree in O(D2) rounds as soon as k ≥ n
D [13]. In view of113

these results, our 2n
k +O(D2 log(k)) guarantee seems close-to-optimal. We highlight the open114

question of whether there exists a 2n
k +O(D2) exploration algorithm, or even a guarantee of115

the form 2n
k +O (f(D)), for some real-valued function f .116

Structure of the paper. Section 2 defines algorithm BFDN and provides the main result117

for the complete communication setting. Section 3 analyzes a two-player zero-sum board118

CVIT 2016
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game, an essential ingredient in our analysis of BFDN. Section 4 contains extensions of BFDN119

to settings with: limited communications; adversarial interruption of robots; and more120

general graph exploration. Finally, Section 5 provides a recursive version of BFDN that yields121

improved runtime guarantees when the tree depth D gets larger compared to n.122

Notations. log(·) refers to the natural logarithm and log2(·) to the logarithm in base 2. For123

an integer k we use the abbreviation [k] = {1, . . . , k}.124

A tree T = (V, E) is defined by its set of nodes V and edges E ⊂ V × V ; it is rooted at125

some specific node denoted root ∈ V from which all robots start the exploration. For a node126

v ∈ V , δ(v) is the distance of v to the root and T (v) denotes the sub-tree of T rooted at v127

containing all the descendants of v. The depth of T is D = maxv∈V δ(v). We will also use a128

notion of partially explored tree (defined in Section 2) that enjoys the same definitions.129

2 The Breadth-First Depth-Next algorithm130

Our main result on BFDN, which is described below, is the following131

▶ Theorem 1. BFDN achieves online exploration of any tree with k robots in at most132

2n

k
+ D2(min{log(∆), log(k)}+ 3)133

rounds, where ∆ is the maximum degree, n is the number of nodes, and D is the depth.134

Following [10], we shall start by showing the guarantee in the complete communication model,135

and we later present in Section 4 how BFDN can be adapted to the write-read model.136

Partially explored tree. At a given exploration round, V denotes the set of explored nodes,137

i.e. nodes that have been occupied by at least one robot in the past, and E denotes the set138

of discovered edges, i.e. edges that have at least one explored endpoint. The discovered edges139

that have exactly one explored endpoint are called dangling edges. Such edges can be viewed140

as a pair (u, ?), with u ∈ V . The partially explored tree or discovered tree Tonline = (V, E)141

contains all the information gathered by the robots at some point of exploration. If there are142

no dangling edges in Tonline, it means that exploration is complete and that the partially143

explored tree equals the underlying tree Toffline ∈ T (n, D).144

Collaborative exploration algorithm. A collaborative exploration algorithm in the complete145

communication model is formally defined as a function that maps a partially explored tree146

T = (V, E) as well as the list of positions of the agents p1, . . . , pk ∈ V k and their past147

movements to a list of selected edges e1, . . . , ek ∈ (E ∪ {⊥})k that the agents will use for148

their next move. Each selected edge ei ∈ E must be adjacent to the position pi. Dangling149

edges may be selected. By convention, ei =⊥ is used to indicate that agent i will not move150

at the next round. In pseudo-code, the routine SELECT(Roboti, e) performs the assignment151

ei ← e. When all agents have selected a next move, the routine MOVE is applied and all agents152

move along their selected edge synchronously. The partially explored tree (V, E) is then153

updated with the new information provided by the agents that have traversed a dangling edge.154

Exploration always starts with all agents located at the root, V = {root} and E the set of155

all dangling edges that are adjacent to the root. The collaborative exploration algorithm156

is applied iteratively. Exploration terminates when the explored tree (V, E) contains no157

dangling edges and when the position of all agents is back at the root. The runtime of an158

exploration algorithm is defined as a function of (n, D) by the number of rounds required159

before termination on any tree with n nodes and depth D.160
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Breadth-First Depth-Next Algorithm. We now provide a brief description of BFDN, Al-161

gorithm 1. When located at the root, a robot indexed by i ∈ [k] and denoted Roboti is162

assigned an anchor vi ∈ V which is a node that is adjacent to at least one dangling edge. If163

no such node exists, the anchor is the root itself. The exact anchor assignment is specified164

by procedure Reanchor which gives the priority to nodes that are the closest to the root and165

that have the least number of anchored robots. Roboti then attains this anchor in a series of166

breadth-first moves performed with procedure BF. When the anchor is reached, the robot167

only makes depth-next moves with procedure DN, until it returns to the root. In a sequence168

of depth-next moves, the robot always goes through a dangling edge if one is available (i.e.169

adjacent and not already selected as next move by another robot), and goes one step up170

towards the root otherwise. This will result in a depth-first-like exploration inside T (vi)171

followed by a direct travel from vi to the root. The algorithm stops when all robots are at172

the root and are not assigned a new anchor because there are no more dangling edges.173

The reason why we ask that the robots go back all the way to the root before being174

reassigned a new anchor, rather than having them use a shortest path from their previous175

anchor to their next anchor, will become apparent when we adapt the algorithm to the176

distributed write-read communication setting. In that setting, the root will play the role177

of a central planner, gathering information on the advancement of exploration thanks to178

returning robots.179

2.1 Analysis of BFDN and proof of Theorem 1180

We first prove the correctness and termination of BFDN and then bound its runtime.181

Correctness. In Algorithm 1, the do-while loop is interrupted when no robot changes182

position at some round (line 14). Note that the root is the only place where robots may stay183

at the same position because direction up is interpreted as ⊥ at the root only (line 23). Thus184

all robots are at the root when the algorithm stops. Also note that the selection of direction185

up by all robots at the root implies that there are no dangling edges in the tree. Thus the186

tree has been entirely explored and all robots have returned. The algorithm is correct.187

Termination. To prove termination, we show that while the algorithm runs, a node is188

discovered every 3D rounds at least. Since there are n nodes in the tree, the algorithm must189

terminate after at most 3D × n rounds. Assume by contradiction that no node is discovered190

in a sequence of 3D rounds. After 2D rounds, all robots have attained the root because all191

DF moves are directed up. Then, either one robot is assigned an anchor that is adjacent to192

an unexplored edge which will be traversed in the coming D rounds, or the algorithm stops.193

In both cases we have a contradiction.194

We now provide the following lemma which will be proved in Section 3.195

▶ Lemma 2. In an execution of BFDN, for any d ∈ {1, . . . , D − 1}, the number of calls to196

procedure Reanchor which return an anchor at depth d is at most k(min{log(k), log(∆)}+ 3).197

Time complexity. During the execution, a given Roboti anchored at vi can spend time in198

two different ways (1) being idle at the root (2) moving along a selected edge. We denote199

by T1
i , T2

i the time (number of rounds) spent by Roboti in each of these phases. We have200

that
∑

i∈[k](T1
i + T2

i ) = kT where T is the total number of rounds of the algorithm as the k201

robots operate in parallel. We now prove a series of claims.202

▶ Claim 1. The total number of rounds when some robot does not move is at most D + 1.203

CVIT 2016
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Algorithm 1 BFDN “Breadth-First Depth-Next”

Ensure: The robots traverse all edges and return to the root.
1: V = list of explored nodes ; E = list of discovered edges
2: vi ← root ∀i ∈ {1, . . . , k} ▷ Initialize anchors.
3: Si ← [ ] ∀i ∈ {1, . . . , k} ▷ Initialize empty stacks.
4: do ▷ Round t.
5: for i = 1 to k do ▷ Sequential decisions.
6: if Roboti is at root then
7: vi ← Reanchor(i)
8: Stack in Si the list of edges that lead to vi ▷ Reverse order.
9: if Si is not empty then

10: BF(i)
11: else
12: DN(i)
13: MOVE all robots on their selected edge and update (V, E) ▷ Synchronous moves.
14: while some robot changes position
15:
16: procedure BF(i)
17: Unstack e ∈ E from Si and SELECT(Roboti, e)
18:
19: procedure DN(i)
20: if Roboti is adjacent to some dangling and unselected edge e ∈ E then
21: SELECT(Roboti, e)
22: else
23: SELECT(Roboti, up) ▷ If Roboti is at the root, up is interpreted as ⊥.
24:
25: procedure Reanchor(i)
26: U = {v ∈ V s.t. v is adjacent to some dangling edge with δ(v) minimal}
27: if U ̸= ∅ then ▷ Choose anchor of minimum load.
28: vi ← arg minv∈U nv where ∀v ∈ V : nv = #{j ∈ [k] s.t. vj = v}
29: else ▷ The tree is explored.
30: vi ← root

Proof of Claim 1. Recall that if a robot does not move, it must be anchored at the root204

and have selected direction up with procedure DN. This only occurs in two cases (1) there205

are no more dangling edges in the discovered tree (this happens at most D times because206

all robots are on their way back) (2) there are still dangling edges that are adjacent to the207

root, but they are all selected (this happens at most once because at the next time-step, all208

edges adjacent to the root will be explored). The number of time-steps when a robot may209

not move is thus at most D + 1. ◀210

▶ Claim 2. In the round when a dangling edge is explored for the first time, it is traversed211

by a single robot.212

Proof of Claim 2: All breadth-first moves (with procedure BF) are through previously ex-213

plored edges because they lead from the root to a previously explored node. Thus dangling214

edges are only explored in depth-next moves (with procedure DN). In this procedure, two215

robots cannot select the same dangling edge. ◀216
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▶ Claim 3. Consider a sequence of moves by some Roboti that starts at the root with the217

assignment of an anchor v of depth δ(v) = d and that ends with the return of Roboti to the218

root after Tx rounds. In this sequence, Roboti explored exactly (Tx − 2d)/2 dangling edges.219

Proof of Claim 3. The sequence of moves, denoted x, has the following structure. First,220

Roboti uses a shortest path from the root to v which takes d moves through previously221

explored edges. Then the robot performs moves inside T (v) by going down through dangling222

edges if some are available and going up towards the root otherwise. Note that exactly223

half of the moves inside T (v) must be through dangling edges as there must be as many224

moves down as moves up in T (v). Finally, the robot goes back from v to the root in again225

d moves through explored edges. Exactly (Tx − 2d)/2 dangling edges are explored in this226

sequence. ◀227

We now assemble the claims and Lemma 2 together to bound the runtime of BFDN. Using228

Claim 1, we have that
∑

i T1
i ≤ k(D+1). Then, we write

∑
i T2

i =
∑

d≤D−1
∑

x∈Xd
Tx where229

Xd is the list of all sequences of moves x that start with the assignment of an anchor v at230

depth δ(v) = d to some robot and that end with the return of that robot to the root. Using231

Claim 2 and Claim 3, we have that
∑

d≤D−1
∑

x∈Xd
(Tx − 2d)/2 ≤ n− 1. Consequently,232 ∑

i∈[k]

T2
i ≤ 2(n− 1) + 2

∑
d≤D−1

∑
x∈Xd

d.233

By Lemma 2, the cardinality of Xd is at most k(min{log(k), log(∆)}+3), for d ∈ {1, . . . , D−1}.234

Thus,
∑

d≤D−1
∑

x∈Xd
d ≤ D(D−1)

2 k(min{log(k), log(∆)} + 3). Finally, using
∑

i∈[k](T1
i +235

T2
i ) = kT, we obtain kT ≤ 2(n− 1) + D(D− 1)k(min{log(∆), log(k)}+ 3) + (D + 1)k, which236

proves that the algorithm stops after at most237

T ≤ 2n

k
+ D2(min{log(∆), log(k)}+ 3)238

steps, thus completing Theorem 1’s proof.239

Though it is not required for the the analysis above, we conclude this section with a final240

claim that provides useful intuition on the algorithm.241

▶ Claim 4. At all rounds, all dangling and unexplored edges, are in ∪i∈[k]T (vi).242

Proof of Claim 4. Consider some dangling edge e and its explored endpoint v ∈ V . At243

the round when v was explored by a robot, that robot was performing a depth-next move244

because its anchor was at least as high as v which is still adjacent to a dangling edge. That245

robot cannot have left T (v) before the edge e was traversed. Consequently, it is still rooted246

at some ancestor vi of v, thus e ∈ ∪i∈[k]T (vi). ◀247

3 A two-player zero-sum game with balls in urns248

In this section we introduce a two-player zero-sum board game that essential to the analysis249

of BFDN. A strategy for the player of the game is given and analyzed in Theorem 3. Its250

connection with BFDN is detailed in Section 3.2 where a proof of Lemma 2 is given.251

3.1 Game of balls in urns.252

Game description. At time t ∈ N, the board of the game is a list of k integers (nt
1, . . . , nt

k)253

that represent the load of k urns with a total of k balls. When the game starts at t = 0, we254

CVIT 2016
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have n0
i = 1 and at every instant t we have

∑
i∈[k] nt

i = k and nt
i ≥ 0. At time t, player A255

(the adversary) chooses a ball in an urn at ∈ [k] that is not empty, i.e. such that nt
at
≥ 1,256

and then player B (the player) chooses an urn bt ∈ [k] and moves that ball from urn at to257

urn bt. At the beginning of time t + 1, the board satisfies nt+1
at

= nt
at
− 1 and nt+1

bt
= nt

bt
+ 1.258

Goal of the game. At a given time t, we denote by Ut the set of urns that have never been259

selected by the adversary, Ut = {1, . . . , k} \ {a0, . . . , at−1}. The game stops when all urns in260

Ut contain at least ∆ balls, i.e. nt
i ≥ ∆,∀i ∈ Ut. If ∆ ≥ k, the game stops when all urns261

have been chosen, i.e. Ut = ∅. The goal of player B is to end the game as soon as possible,262

while the goal of the adversary is to play for as long as it can.263

Strategy of the player. At time t, the player picks the urn bt that contains the least264

number of balls among the urns that were never chosen by the adversary, i.e. bt ∈265

arg mini∈[k]\{a0,...,at} nt
i. For this strategy, we state the main result of this section.266

▶ Theorem 3. Under this strategy, the game ends after at most k min{log(∆), log(k)}+ 2k267

steps.268

Interpretation of the game. While the main focus of this paper is on collective tree269

exploration, a more immediate application of the above result is in resource allocation in270

the face of uncertainty. Given k workers and k (parallelizable) tasks of unknown length, our271

analysis shows that the ‘best’ way to reassign idle workers online is to reassign them to the272

unfinished task which has the least number of workers working on it. Using this simple rule,273

the number of times a worker changes task is at most log(k) + 2 times the optimum (which274

is of order k) irrespective of the individual task lengths.275

Proof. The set Ut does not increase with time. We denote its cardinality ut = |Ut|. Denoting276

Nt =
∑

i∈Ut
nt

i the total number of balls in urns of Ut, the possible number of balls for an277

urn of Ut lies in {⌈Nt

ut
⌉, ⌊Nt

ut
⌋}. The game thus stops as soon as Nt

ut
≥ ∆ and the quantity278

xt := ∆ut −Nt, must thus be positive as long as the game lasts. We distinguish two options279

for the adversary at any step t:280

(a) The adversary chooses an urn at that it previously chose (at ̸∈ Ut). In this case, ut+1 = ut281

and Nt+1 = Nt + 1. Note that this option is available to the adversary only if some ball282

lies outside of Ut, i.e. if Nt ≤ k − 1.283

(b) The adversary chooses an urn at that it has never chosen before (at ∈ Ut). In this case,284

ut+1 = ut − 1 and Nt+1 = Nt − nt
at

+ 1.285

We now will establish that the adversary always prefer option (a) to option (b). For parameters286

u, N ∈ {0, . . . , k}, we denote by R(N, u) the largest number of steps that the game may still287

last after player B’s move led to a configuration where Nt = N and ut = u at any time t.288

Note that by the discussion above, this value is the same for all such configurations of the289

game. Clearly, ∆u−N ≤ 0⇒ R(N, u) = 0. Besides, in view of the options (a) and (b) just290

listed, one has the following, assuming ∆u−N > 0:291

N < k ⇒ R(N, u) = 1 + max


R(N + 1, u),
R(N − ⌈N/u⌉+ 1, u− 1),
R(N − ⌊N/u⌋+ 1, u− 1).

(1)292

293

N = k ⇒ R(N, u) = 1 + max
{

R(N − ⌈N/u⌉+ 1, u− 1),
R(N − ⌊N/u⌋+ 1, u− 1).

(2)294
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We now establish the following,295

▶ Lemma 4. For any (u, N) ∈ {0, . . . , k}, it holds that:296

i) Function M → R(M, u) is non-increasing, and297

ii) The maximum in (1) for N < k is always achieved by R(N + 1, u).298

Proof. For u = 0, R(M, u) ≡ 0 and there is nothing to prove. Assume that the two properties299

i) and ii) hold for v = u− 1 ≥ 0. We will show that ii) holds for u. Consider N < k. By the300

monotonicity assumption i),301

R(N − ⌈N/u⌉+ 1, u− 1) ≥ R(N − ⌊N/u⌋+ 1, u− 1).302

Assume thus that the adversary moves first to configuration (N − ⌈N/u⌉ + 1, u − 1). By303

assumption ii) at rank v, its next best move is to configuration (N − ⌈N/u⌉ + 2, u − 1).304

If alternatively the adversary had made a first move to (N + 1, u), it could then move to305

(N + 1 − ⌈(N + 1)/u⌉ + 1, u − 1). Now by the monotonicity assumption ii) this can only306

improve the adversary’s reward if N − ⌈N/u⌉ + 2 ≥ N + 1 − ⌈(N + 1)/u⌉ + 1, which is307

obviously true. We have thus established ii) at rank u. Monotonicity i) at rank u readily308

follows, since we now have that R(N + 1, u) = R(N, u)− 1 if ∆u−N > 0. ◀309

From the lemma above, we conclude that a strategic adversary always prefer option (a) over310

option (b) when it is available. Playing option (b) grants the adversary a budget to choose311

option (a) for another ⌈Nt

ut
⌉ − 1 time steps. In such game, ut is thus decremented by 1 every312

⌈ k
ut
⌉ steps. The game stops if ut ≤ k

∆ , thus right after ut = ⌈ k
∆⌉. Assuming ∆ ≤ k, the313

game then lasts a total time of at most ⌈k
k ⌉+ ⌈ k

k−1⌉+ · · ·+ ⌈ k
⌈k/∆⌉⌉ ≤

∑k
h=⌈k/∆⌉

(
k
h + 1

)
≤314

k
∑k

h≥k/∆+1
1
h + 2k ≤ k

∫ k

k/∆
dx
x + 2k ≤ k(log(k)− log(k/∆)) + 2k = k log(∆) + 2k. Instead315

assuming k < ∆, the game will stop after ut = 1 and the sum is thus bounded by k
∫ k

1
dx
x +2k ≤316

k log(k) + 2k. Overall, the game ends in at most k min{log(∆), log(k)}+ 2k steps. ◀317

3.2 Connection to BFDN318

We start by giving some intuition to connect the game above to BFDN and then provide a319

proof of Lemma 2. The general picture is that balls of the game will correspond to robots320

exploring the tree whereas urns of the game will correspond to the anchors at the working321

depth d, i.e. the minimum depth of a dangling edge. Note that in BFDN, procedure Reanchor322

applies the strategy for the player of the game described above, by reassigning the current323

robot to the anchor of smallest load within set U , which is defined line 26 of Algorithm 1 by,324

U = {v ∈ V s.t. v is adjacent to some dangling edge and δ(v) = d}. (3)325

▶ Lemma 2 (Restated). In an execution of BFDN, for any d ∈ {1, . . . , D− 1}, the number of326

calls to procedure Reanchor returning a node at depth d is at most k(min{log(k), log(∆)}+3).327

Proof. We start the proof of the lemma by the following claim on BFDN.328

▶ Claim 5. At some round, if all anchors are at depth at most d− 1, all nodes v explored329

at depth d are in either of these (non-exclusive) situations: their sub-tree T (v) is entirely330

explored, or their sub-tree T (v) hosts exactly one robot.331

Proof of Claim 5. Consider an explored node v at depth d that contains a dangling edge332

in its sub-tree T (v). We show that T (v) hosts one robot. The dangling edge must have an333

explored endpoint v′ ∈ T (v) that was attained by a robot performing depth-next moves.334
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This robot cannot have left T (v′) ⊂ T (v) because v′ is still adjacent to a dangling edge,335

thus that robot is still in T (v). At most one robot is in T (v) because v can only have been336

attained by a single robot, since all anchors are at depth d− 1 or above. ◀337

We now provide a reduction of the analysis of BFDN to the urns and balls game. We fix338

some depth d ≥ 1 and bound the number Nd of times a robot is reanchored at depth d. We339

denote by U0 the set U , defined by (3), in the first round when it consists of nodes at depth340

d. Since all anchors were at depth less than k − 1 before that round, using Claim 5 we have341

that |U0| ≤ k (in fact, |U0| ≤ k− 1 because at least one robot must be at the root). Since all342

edges at depth less than d− 1 are explored, we note that U0 contains all nodes which are343

possible candidates for anchors at depth d and that U ⊂ U0 for as long as it concerns nodes344

at depth d. For each candidate anchor in U0, we formally re-anchor the robot exploring345

the corresponding sub-tree to this anchor. This does not change the algorithm’s evolution346

because there are no more dangling edges at depth less than d so all robots head back directly347

to the root when they have finished explored below the associated candidate anchor.348

We then increment counter c at every call of the procedure Reanchor, with possibly349

multiple increments within a single round. For counter value c, we denote by ac ∈ U0 the350

vertex to which the robot was previously anchored, and by bc ∈ U the vertex to which it is351

anchored next. Note that all nodes in {a1, . . . , ac} can no longer be adjacent to a dangling352

edge. We stop the increment the last time a robot is anchored at depth d, which happens353

when there does not remain any node at depth d that is adjacent to some dangling edge.354

Consider the number of calls C when for each node in U0, either a robot returning from it355

has reached the root, or at least ∆ robots are anchored at it. Then C is the duration of a run356

of the previous two-player game, initialized with one urn containing k − u balls and u urns357

each containing one ball, where u = |U0| ∈ {0, . . . , k − 1} and where player B implements358

the balancing strategy. Indeed the re-anchoring strategy of BFDN balances the numbers of359

robots assigned per anchor. A direct adaptation of our analysis also holds for this modified360

initial condition of the game, yielding the upper bound on C of k(min{log ∆, log k} + 2).361

Once C assignments at depth d were made, at least ∆ robots are assigned to nodes at depth362

d that are still adjacent to a dangling edge. In the subsequent d rounds BFDN can anchor363

each robot at most one last time before there is no more dangling edge at depth d. This364

yields the announced bound of k(min(log(k), log(∆)) + 3) on Nd. ◀365

4 Extensions of BFDN to alternative settings366

We now consider three settings where a BFDN strategy enjoys non-trivial runtime guarantees.367

4.1 Restricted memory and communications368

In this section, we study a setting where robots are allowed to communicate with a central369

planner only when they are located at the root and where they have access to ∆ + D log(∆)370

bits of internal memory. This setting encompasses the write-read communication model of371

[10] as detailed in Remark 5. Formally, we precise the setting as follows. At every node,372

the ports, which are defined as the endpoints of the adjacent edges, are numbered from 0373

to ∆ − 1 where ∆ is the maximum degree. A node v at depth d ≤ D is identified by the374

sequence of ports that leads to it from the root with d log2(∆) bits. For every node distinct375

from the root, we assume that port number 0 leads to the root. As before, robots operate in376

rounds. All robots arriving at the root at some round t have their memory read and stored377

by the planner along with their identifier. The planner can then perform any computation378
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and update the memory of the robots. All robots arriving at some node v distinct from the379

root at some round t can observe the list of all ports at v from which a robot has returned380

(these will be called “finished ports”) and are given two choices: SELECT a port number as381

next move, or use a local routine PARTITION(v) enjoying the following properties,382

No two robots calling PARTITION(v) will ever be sent to the same port j ≥ 1.383

If a robot calling PARTITION(v) at round t is sent to port j ≥ 0, it means that PARTITION(v)384

has previously sent a robot to all ports j′ ≥ j at round t or before.385

In this model, BFDN is implemented as follows. In a stack of d port numbers (each represented386

by log2(∆) bits) the central planner assigns to Roboti an anchor vi at depth d that it will387

reach by unstacking port numbers and applying routine SELECT. When the robot reaches388

this node, the stack is empty and the robot will make consecutive calls to routine PARTITION389

that will eventually lead it back to the root. We ask that Roboti stores the finished port390

numbers of vi using its additional ∆ bits of memory. This information will be used by the391

central planner to update its candidates for future anchors, i.e. the value of the set U , as392

specified by Algorithm 2 below.393

▶ Remark 5. The present model encompasses the classical write-read communication model394

of [10] where robots with unbounded memory communicate by synchronously writing and395

then synchronously reading information on whiteboards (of infinite size) located at each node396

of the tree. In this model, the information gathered at the root allows each robot located397

at the root to emulate the decision taken by the central planner regarding its next anchor398

assignment. Furthermore, since robots can log their passages at any node (see [10]) the local399

procedure PARTITION can easily be implemented, and the assumption that robots access the400

list of adjacent port number from which no robot has returned is granted.401

▶ Proposition 6. In this restricted communication model, the version of BFDN described402

above achieves tree exploration in at most 2n
k + D2(min{log(k), log(∆)}+ 3) rounds.403

Proof. We note that the algorithm described above is the same as Algorithm 1, with a minor404

difference in the definition of U in procedure Reanchor line 26, which must now be computed405

using only information gathered at the root (see Algorithm 2 for details). Informally, U now406

denotes the set of all nodes at working depth d which could be adjacent to a dangling edge,407

given information collected at the root.408

The key observation is that a candidate anchor v can be withdrawn from U as soon409

as a robot which had been anchored at v returns to the root. Consider again the urns-in-410

balls assignment rule bc = arg minv∈U\{a1,...,ac} nc
v, where nc

v denotes the number of robots411

anchored at v upon increment c, but where nodes in U remain eligible as anchors until some412

robot has returned to the root from them. The proof of Theorem 3 entails that, for such413

a modified assignment rule, a robot will have returned from all nodes of U after at most414

k(min{log(k), log(∆)}+ 3) reassignments, after which the root knows that there can be no415

more dangling edges at depth d.416

Algorithm 2 below precises how the central planner uses information gathered by returning417

robots to update its knowledge of eligible anchors at the working depth d. Denoting the418

list of all possible anchors at depth d by A and the list of anchors at depth d from which419

a robot has returned by R, the planner implements Reanchor with set U = A \ R. When420

A \ R = ∅, a robot has returned from all anchors at depth d and d is incremented. The421

planner keeps track of U ′ = A′ \R′, which contains the children of A that may be adjacent422

to a dangling edge, or equivalently the ports of A that are not known to be finished. This423

update is performed using the memory of the returning robots. ◀424
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Algorithm 2 BFDN “Breadth-First Depth-Next” (central planner at the root)

Require: At most k robots arriving at the root at some round.
Ensure: Assigns a node v, represented by a sequence of port numbers, to each robot.

1: d = working depth ;
2: A = list of anchors at depth d ;
3: R = nodes of A from which a robot has returned ;
4: A′ = list of children of nodes in A ;
5: R′ = nodes of A′ from which a robot has returned ;
6: Read memory of returning robots and update R, A′, R′.
7: if A \R = ∅ then
8: if A′ \R′ = ∅ then
9: Exploration is finished and robots wait at the root.

10: else
11: d← d + 1
12: A← A′ \R′ ▷ contains at most k elements.
13: R, A′, R′ ← ∅
14: Reanchor the robots to nodes of minimum load in A \R, such that after this operation

the numbers of robots per anchor differ by at most one.

4.2 Adversarial robot break-downs425

So far we assumed that all robots traverse exactly one edge per time-step. We relax this426

assumption in the present section, assuming instead that some adversary decides at each427

time-step and for each robot whether the robot actually moves, or instead incurs a break-428

down, being stalled at its current location. Our aim remains to to explore the tree in as few429

moves as possible. However we no longer require that the robots return to the root at the end430

of exploration, because the adversary could decide to break-down some robot indefinitely.431

Formally, at each round t ∈ N, robot i is allowed to make a move if some variable Mti = 1432

whereas it is blocked at its current position if Mti = 0. For this adversarial model, we assume433

that M = (Mti)t∈N,i∈[k] is an arbitrary sequence of binary values that takes only a finite434

number of 1 (allowed moves). We denote the average distance travelled by the robots A(M)435

which equals A(M) = 1
k

∑
t∈N

∑
i∈[k] Mti.436

For this setting, we consider BFDN as specified in Algorithm 1, with the minor modification437

that at each round t the only robots taking part in the assignment process are those which are438

allowed to move. More precisely, we replace the for loop of Algorithm 1 (for i ∈ {1, . . . , k}439

do) with an iteration over all robots that may move (for i ∈ {i : Mti = 1} do). This440

modification is introduced to ensure that when multiple robots are at the same location,441

blocked robots do not prevent unblocked robots from traversing dangling edges.442

▶ Proposition 7. For any sequence of allowed moves M ∈ {0, 1}N×[k] satisfying A(M) ≥443

2n
k + D2(log(k) + 3) all edges of the tree will be visited by the above variant of BFDN.444

Proof. Again, the proof is very similar to that of Theorem 1 and all claims 1-5 all naturally445

adapt to this setting. As an example, we adapt the third claim as follows.446

▶ Claim 3 (Restated). Consider a sequence of moves by some Roboti that starts at the root447

with the assignment of an anchor v of depth δ(v) = d and that ends with the return of Roboti448

to the root after Tx allowed moves of Roboti. In this sequence, Roboti has explored exactly449

(Tx − 2d)/2 dangling edges.450
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The adversarial nature of the urns and balls game of Section 3 makes it applicable to the451

present setup, and Lemma 2 straightforwardly holds except for the log(∆) guarantee. Indeed,452

the adversary could choose to block all robots at a specific anchor until all k robots reach453

that anchor, which happens after at most k(log(k) + 3) anchor assignments. ◀454

▶ Remark 8. Other adversarial settings could be considered, for instance with an adversary455

that observes the moves that the robots have selected before choosing which robots to456

block. Another extension of interest would consist in relaxing the slotted time assumption to457

consider instead continuous time evolution, which could capture more realistic scenarios.458

4.3 Collaborative exploration of non-tree graphs459

The algorithm BFDN described above can be executed on any graph if it undergoes a minor460

modification: that any robot traversing on a dangling edge and arriving on a node explored461

earlier by another robot should go back from where it came and “close” the corresponding462

edge (this edge will never be used again). A similar technique was already proposed by [1]463

to adapt the algorithm of [10] to graphs. Unfortunately, without further assumption, the464

guarantees of BFDN do not generalize to graphs with n edges and radius D, where the radius465

is defined as the maximum distance between a node and the origin of the robots.466

We therefore make the additional assumption that at any given node, a robot knows its467

distance to the origin in the underlying graph. Though restrictive, this assumption holds in468

some contexts of interest. It is for instance satisfied for the exploration of grid graphs with469

rectangular obstacles considered in [12] because the distance of any node with coordinates470

(i, j) ∈ N2 to the origin is equal to the so-called Manhattan distance i + j.471

In that context, consider the following variant of BFDN: a robot traversing a dangling edge472

e will backtrack and “close” this edge if either of these two conditions is satisfied: (1) e led473

to a node that is already explored (2) e led to a node that is not strictly further to the origin474

than its first endpoint. In the case of (2), the node that is reached by the edge over which475

the respective robot backtracks is not considered as explored.476

▶ Proposition 9. Given a graph G = (V, E) with n edges, diameter D and maximum degree477

∆, assuming that the k robots are aware at all times of their distance to the origin and478

implement the above variant of BFDN, collaborative graph exploration is completed in at most479

2n
k + D2(min{log(∆), log(k)}+ 3) rounds.480

Proof. It is clear that at the end of the execution of this algorithm, the edges which have481

never been closed form breadth-first tree of the graph with depth D. This tree is explored482

efficiently by BFDN while other edges are traversed at most twice by a single robot (or once483

by two robots, each coming from both endpoints, that will swap their identities). This leads484

to a total runtime of at most 2n
k + D2(min{log(∆), log(k)}+ 3). ◀485

5 Recursive Algorithms for Improved Dependence on Depth D486

In this section we develop a general recursive construction of so-called anchor-based algorithms487

which, applied to BFDN, yields the following result. It can be seen as a generalization of488

Theorem 1 as, for ℓ = 1, it provides the same upper-bound up to a factor 4.489

▶ Theorem 10. For any integer ℓ ≥ 1, BFDNℓ, an associated recursive version of BFDN,490

explores a tree with n nodes, depth D, maximum degree ∆ with k robots in 4n
k1/ℓ + 2ℓ+1(ℓ +491

1 + min {log(∆), log(k)/ℓ}) D1+1/ℓ rounds.492
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To describe our recursive construction we need the following definitions. Given a node v493

in a tree T , PT [v] denotes the path from v to the root of T , and PT (v) = PT [v] \ {v}. Given494

two nodes u, v in a tree T , LCAT (u, v) denotes their lowest common ancestor in T . We say495

that a explored node is open as long as it has at least one dangling adjacent edge. We say496

that it is closed as soon as a robot has traversed its last dangling edge. Note that open nodes497

are the parents of dangling edges. We decompose the exploration of an edge into two edge498

events as follows. An edge event occurs when a robot traverses an edge from parent to child499

for the first time, or when a robot traverses an edge from child to parent for the first time.500

There are thus at most 2(n− 1) edge events in any exploration. Edges for which only one501

event has occurred are said to be half explored.502

Anchor-based algorithm. Given k robots, an activity parameter k∗ ∈ [k], and a depth d,503

an anchor-based algorithm A(k∗, k, d) is by definition an exploration algorithm by k robots504

meeting the following requirements. Each robot is in one of the two states active or inactive.505

Each active robot i is assigned to a node vi of the tree called its anchor. The algorithm must506

explore the tree so as to bring anchors at depth d while maintaining a list of invariants. The507

full list of so-called “Anchor-based invariants” is given in Appendix B. It mainly includes508

a variant of Claim 4 called Open Node Coverage which specifies that all open nodes must509

always be in ∪i∈AT (vi) where A is the set of active robots. Other invariants mainly specify510

properties of the positions of the robots with respect to the partially explored tree and ensure511

that we can start an execution of an anchor-based algorithm after having interrupted the512

execution of another anchor-based algorithm.513

Initially, the algorithm starts from any partially explored tree, with all robots active and514

anchored at the root. Robots must be in so-called Parallel DFS Positions, a requirement515

ensuring that all invariants are initially satisfied (see Appendix B). Active robots are allowed516

to move and explore the tree while inactive robots must be at depth at most d and wait.517

We distinguish two phases in the execution of the algorithm. As long as some anchor is518

at depth less than d or is not closed, we say that the algorithm runs shallow. During this519

first “shallow” phase, the algorithm must have at least k∗ active robots at all rounds. When520

all anchors are at depth d and are all closed, we say that the algorithm runs deep. In this521

second “deep” phase, it is required that all active robots trigger an edge event at each round.522

However, the number of active robots may get below k∗ during that phase. At any round,523

the algorithm may turn a robot into inactive or active as long as the requirements for the two524

phases are met. Finally, the algorithm can terminate when all robots are inactive. The Open525

Node Coverage invariant implies that the tree is then completely explored (see Appendix B).526

Divide depth functor. We now define the divide depth functor D, a map that takes an527

anchor-based algorithm and transforms it into another anchor-based algorithm as follows.528

Given an anchor-based algorithm A(k∗, k′, d′), a number nteam of teams and a number529

niter of iterations, we construct the exploration algorithm D[A(k∗, k′, d′); nteam; niter] for530

terminating the exploration of a partially explored tree. It uses k = nteamk′ robots for531

exploring the tree up to depth d = niterd′ in niter iterations where each iteration makes532

anchors progress d′ deeper. More precisely, the i-th iteration runs parallel instances of533

A(k∗, k′, d′) in at most nteam sub-trees rooted at nodes with depth (i− 1)d′. We assume that534

the previous iteration has terminated with a set R of at most k∗ ≤ nteam anchors at depth535

(i− 1)d′. Relying on the Open Node Coverage invariant, we then restrict the exploration to536

the sub-trees rooted in R. Robots are thus partitioned into nteam teams of k′ robots each.537

Each node r ∈ R is taken in charge by a distinct team which runs an instance Ar(k∗, k′, d′)538
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of A(k∗, k′, d′) on T (r). When |R| < nteam, all robots in unassigned teams are inactive and539

wait at their position until the end of the current iteration. All other teams explore in parallel540

their sub-trees. We interrupt all running instances simultaneously when the overall number541

of active robots gets below k∗ so that we can use their anchors as roots in the next iteration.542

As any single instance has activity parameter k∗ this cannot happen until all anchors are at543

depth d′ in each sub-tree, that is depth i · d′ in T . After niter iterations, this guarantees that544

all nodes up to depth d have been closed and that exploration finally continues in at most545

k∗ sub-trees rooted at depth d. See Appendix C for a formal description of the resulting546

anchor-based algorithm B(k∗, k, d) = D[A(k∗, k′, d′); nteam; niter].547

We say that an anchor-based algorithm A(k∗, k, d) has f -shallow efficiency for parameter548

f if it triggers at least k∗(T− f) edge events when running shallow during T rounds where549

parameter f may depend on k and d. We then have the following550

▶ Proposition 11. Given an anchor-based algorithm A(k∗, k′, d′), integers nteam ≥ k∗
551

and niter ≥ 1, D[A(k∗, k′, d′); nteam; niter] is correct and it is an anchor-based exploration552

algorithm B(k∗, k, d) for k = nteamk′ robots with depth d = niterd′. If moreover A(k∗, k′, d′)553

has f ′-shallow efficiency, then D[A(k∗, k′, d′); nteam; niter] has f-shallow efficiency with554

f = niterf ′ + n2
iterd′ = niter(f ′ + d).555

Its proof is deferred to Appendix C. The reason for f -shallow efficiency is the following.556

Consider the i-th iteration of DA,k′,d′(k∗, k, d). Moving robots towards their associated root557

takes 2(i − 1)d′ rounds. Now, count the number T1 of rounds where at least one of the558

instances has not run deep. As such an instance has run shallow during T1 rounds, it has559

triggered at least k∗(T1 − f ′) edge events by f ′-shallow efficiency of A(k∗, k, d). During560

the remaining T2 rounds of the iteration, all instances run deep. As this continues as long561

as k∗ robots or more are active, at least k∗ edge events are triggered per round, that is562

k∗T2 or more in total. Letting Ti = 2(i − 1)d′ + T1 + T2 denote the number of rounds563

spent in the ith iteration, the number of edge events triggered during that iteration is thus564

at least k∗(Ti − f ′ − 2(i − 1)d′). The algorithm runs shallow during the niter iterations565

which last overall T =
∑niter

i=1 Ti. By summation, we get that it then triggers at least566

k∗(T− niterf ′ − n2
iterd′) edge events as

∑niter

i=1 (i− 1) < n2
iter/2.567

BFDN. Our first candidate for applying the divide depth functor is the following variant of568

Algorithm 1, denoted, BFDN1(k, k, d), where the procedure Reanchor is modified for assigning569

anchors at depth at most d. Precisely, we replace Line 26 with:570

U = {v ∈ V s.t. v is adjacent to some unexplored edge and δ(v) is minimal and δ(v) ≤ d}.571

Note that this modification implies that when there are no more dangling edges at depth at572

most d, robots start to be anchored to the root and are then considered as inactive. Note573

that according to Claim 5 for depth d + 1, there still remains exactly one robot in each574

sub-tree rooted at depth d + 1 which is not entirely explored. These robots remain active575

until they have completely explored their sub-tree. BFDN1(k, k, d) thus terminates only when576

the tree has been fully explored. We also slightly modify the anchoring of robots: when a577

robot i is anchored at vi it might happen that there are no more dangling edges at depth578

δ(vi) or less thanks to the exploration of other robots. If this happens when vi ∈ P (ui) and579

δ(vi) < d, we re-anchor robot i at the children of vi in P [ui]. This modification does not580

change the movements of robot i as it is then in a sequence of depth-next moves and will go581

up when reaching vi anyway. However, this modification will ensure the preservation of the582

Partial Exploration invariant defined in Appendix B. It also implies that when there are no583

more dangling edges at depth at most d, all anchors are then at depth d.584
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One can then easily check that BFDN1(k, k, d) is an anchor-based algorithm. For example,585

the Open Node Coverage invariant is shown as Claim 4; see Appendix B for more details. We586

also note that BFDN1(k, k, d) has c1(k)d2-shallow efficiency where c1(k) = min{log ∆, log k}+2.587

Indeed, BFDN1(k, k, d) runs exactly as Algorithm 1 as long as there are dangling edges at depth588

at most d, that is as long as the algorithm is running shallow. If this phase lasts T rounds,589

it triggers at least k(T − c1(k)d2) edge events. The proof is similar to that of Theorem 1590

using Lemma 2 with the slight subtlety that we count edge events. The reason is that when591

starting from a partially explored tree where robots are in Parallel DFS Positions, the moves592

when robots go up still trigger edge events although no new edge may be discovered.593

The BFDNℓ(k∗, k, d) anchor-based algorithm. We construct recursively a series of algorithms594

BFDNℓ(k1/ℓ, k, d) for ℓ ≥ 1 as follows. Assuming that k and d are both ℓ-th powers of integers,595

we define for ℓ ≥ 2 the algorithm BFDNℓ(k∗, k, d) := D[BFDNℓ−1(k∗, k/nteam, d/niter); nteam; niter]596

with k∗ = nteam = k1/ℓ and niter = d1/ℓ. We let k′ = k/nteam = k(ℓ−1)/ℓ and d′ = d/niter =597

d(ℓ−1)/ℓ denote the parameters used for BFDNℓ−1. Note that k′ and d′ are both (ℓ − 1)-th598

powers of integers and recursive calls all have integer-valued parameters. The activity599

parameter of instances BFDNℓ−1(k∗, k′, d′) indeed satisfies (k′)1/(ℓ−1) = k1/ℓ = k∗. As we600

use nteam = k∗, we indeed respect the constraint k∗ ≤ nteam. We can bound its shallow601

efficiency according to the following statement:602

▶ Lemma 12. Given an integer ℓ ≥ 2, two integers k and d that are both ℓth powers of603

integers, BFDNℓ(k1/ℓ, k, d) is cℓ(k)d1+1/ℓ-shallow efficient with cℓ(k) = c1(k1/ℓ) + ℓ− 1.604

Proof. As BFDN1(k1/ℓ, k1/ℓ, d1/ℓ) is c1(k1/ℓ)d2/ℓ-shallow efficient, by induction (Proposi-605

tion 11) BFDNj(k1/ℓ, kj/ℓ, dj/ℓ) is (c1(k1/ℓ)+j−1)d(j+1)/ℓ-shallow efficient for j = 2, . . . , ℓ. ◀606

▶ Definition 13 (of BFDNℓ). If k is the ℓ-th power of an integer, consider the sequence of depths607

dj = 2jℓ for j = 1, 2, . . . Algorithm BFDNℓ consists in running BFDNℓ(k1/ℓ, k, d1), interrupting608

it right after its last iteration (without running deep further), then running BFDNℓ(k1/ℓ, k, d2)609

with the current robot positions and anchor assignments until its last iteration finishes, and610

so on. When running BFDNℓ(k1/ℓ, k, dj) with j = ⌈ log2 D
ℓ ⌉, all anchors reach depth D and the611

algorithm terminates. If k is not an integer to the power ℓ, we use K = ⌊k1/ℓ⌋ℓ ≤ k.612

Proof. (of Theorem 10) Assume first that k is the ℓ-th power of some integer. In a run613

of BFDNℓ, denote by Tj the number of rounds that the call to BFDNℓ(k1/ℓ, k, dj) lasts. This614

call triggers at least k1/ℓ(Tj − cℓ(k)d1+1/ℓ
j ) edge events by applying Lemma 12. We can615

thus bound the overall running time T =
∑⌈(log2 D)/ℓ⌉

j=1 Tj by summing over all calls: 2n ≥616

k1/ℓ
(

T− cℓ(k)
∑⌈(log2 D)/ℓ⌉

j=1 d
1+1/ℓ
j

)
. As we have

∑⌈(log2 D)/ℓ⌉
j=1 d

1+1/ℓ
j =

∑⌈(log2 D)/ℓ⌉
j=1 2(ℓ+1)j ≤617

2(ℓ+1)((log2 D)/ℓ+2)−1
2ℓ+1−1 ≤ 2ℓ+1D1+1/ℓ, we obtain T ≤ 2n

k1/ℓ + 2ℓ+1cℓ(k)D1+1/ℓ. For arbitrary618

k, with K = ⌊k1/ℓ⌋ℓ, using K1/ℓ ≥ k1/ℓ/2, we obtain a time bound of T ≤ 4n
k1/ℓ +619

2ℓ+1(ℓ− 1 + c1(k1/ℓ))D1+1/ℓ, yielding the runtime bound announced in Theorem 10 since620

c1(k1/ℓ) = 2 + min {log(∆), log(k)/ℓ}. ◀621
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A Comparisons between Algorithms CTE, Yo* and BFDN673

We provided in Figure 1 a picture of how BFDN compares in terms of runtime with other674

state-of-the art algorithms for collaborative tree exploration. The regions are defined up to675

multiplicative constants that only depend on k. We included in the figure only algorithms676

requiring no assumptions on the tree structure. Four algorithms thus appear in the figure:677

the original “collaborative tree exploration” CTE algorithm of [10] with runtime O( n
log(k) +D),678

the recursive algorithm Yo* of [13] with runtime O(2O(
√

log D log log k) log k(log n+log k)(n/k+679

D)), which we reduced to smaller quantities to simplify the picture, BFDN with runtime680

2n/k + D2 log(k) as well as its recursive variant BFDNℓ.681

Figure 1 highlights that BFDN is the only algorithm to outperform CTE of [10] in an682

unbounded range of parameters (n, D). Indeed, the other competitor, Yo*, is outperformed683

by CTE when n ≥ ek or when D ≥ elog(k)2 . Yet, CTE remains the most efficient algorithm for684

trees with small depth. We detail below the calculations that led to Figure 1.685

Comparison between BFDN and CTE. Since the runtime of any collaborative tree algorithm686

exceeds n/k and D, it is sufficient to compare the suboptimal terms of both algorithms which687

are D2 log(k) and n/ log(k) for BFDN and CTE respectively. It therefore turns out that BFDN688

is faster than CTE in the range D2 log(k)2 ≤ n.689

Comparison between CTE and Yo*. First, we simplified the runtime of Yo* to O(log(n)n/k+690

D), which gives that it can outperform the O(n/ log(k) + D) of [10] only in the range691

n ≤ ek/ log(k) which we extend to n ≤ ek in the picture. After, we simplified the runtime692

of Yo* to O(e
√

log(D)n/k + D) to obtain the range D ≤ elog(k)2 . Finally, we simplified693

the runtime of Yo* to D log(n) log(k) to get that CTE outperforms Yo* for trees satisfying694

D ≥ n
log(n) log(k)2.695

Comparison between BFDN and Yo*. We used the comparisons above for ek ≤ n or elog(k)2 ≤696

D, and completed by the following simplification of the runtime of Yo* to O(log(k)n/k + D).697

BFDN is thus faster than Yo* when log(k)D2 ≤ log(k)n/k, that is when kD2 ≤ n/k.698

Comparison between BFDNℓ and CTE. We note that BFDNℓ may outperform CTE only if699

k1/ℓ > log(k), or equivalently if ℓ < log(k)
log(log(k)) , which we assumed in the caption of the700

Figure. Under this condition, BFDNℓ outperforms CTE if 2ℓ log(k)D1+1/ℓ < n
log(k) . Since we701

have 2ℓ < k, this condition is met if D < 1
k log(k)2 nℓ/(ℓ+1).702

Comparison between BFDNℓ and BFDN. If n/k > D2, if is clear that BFDN outperforms703

BFDNℓ. On the other hand, if n/k1/ℓ < D2, BFDNℓ outperforms BFDN.704

B Formal description of Anchor-based Invariants705

During the execution of an anchor-based algorithm, it is required that the partially explored706

tree, the set A ⊆ [k] of active robots, the anchor assignment (vi)i∈A, and the positions707

(ui)i∈[k] of the robots always satisfy the following invariants:708

all open nodes of the currently explored tree are in ∪i∈[k]PT [ui], (DFS Open Coverage)709

for any two robots i ̸= j, all nodes in PT (LCAT (ui, uj)) are closed, (Parallel Positions)710
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for all active robot i such that vi ∈ PT [ui], all edges in the path from vi to ui are half711

explored, (Partial Exploration)712

for all active robot i ∈ A, δ(vi) ≤ d, (Limited Anchor Depth)713

all inactive robots are located at depth at most d, (Inactive Depth)714

all open nodes of the currently explored tree are in ∪i∈AT (vi), (Open Node Coverage)715

if ∃i ∈ A such that either δ(vi) < d or vi is open, then at least k∗ robots are active,716

(Shallow Activity)717

if all anchors {vi : i ∈ A} are at depth d and are close, each active robot triggers an edge718

event at each round. (Deep Activity)719

Initially, robots are said to be in Parallel DFS Positions when DFS Open Coverage,720

Parallel Positions and Partial Exploration are all three satisfied when assuming that all721

robots are active and anchored at the root. One can easily check that other invariants are722

then also satisfied.723

Properties of an anchor-based algorithm. The Open Node Coverage invariant implies that724

all nodes at depth less than d′ are closed where d′ = mini∈A δ(vi) is the minimum depth of725

an anchor. The Shallow Activity invariant implies that the number of active robots may726

decrease below k∗ only when all anchors are at depth d and consequently when all nodes up727

to depth d are closed. The Open Node Coverage invariant also implies that for any dangling728

edge adjacent to a explored node w, there exists at least one active robot i such that w is in729

T (vi). This implies that if all anchors are at depth d and if i is the last robot with anchor vi,730

it cannot become inactive unless T (vi) has been completely explored. This indeed implies731

that the algorithm cannot terminate unless the full tree has been completely explored: as732

long as there remains an open node w, some robot i must be active with an ancestor of w733

as anchor. Recall that we require that the algorithm cannot terminate unless all robots are734

inactive.735

BFDN BFDN1(k, k, d) is an anchor-based algorithm. Indeed, the Open Node Coverage736

invariant is shown as Claim 4; the DFS Open Coverage and Partial Exploration invariants737

come from the similarity of DN moves with a DFS traversal, while the Parallel Positions738

invariant comes from the selection of distinct dangling edges when several robots are located739

at the same node. The Limited Anchor Depth and Inactive Depth invariants are satisfied by740

the modification of anchor selection. The Shallow Activity invariant comes from the fact741

that all robots are active as long as there remain some dangling edge at depth at most d.742

Finally, the Deep Efficiency invariant comes from Claim 5 as when the algorithm runs deep,743

each sub-tree at depth d + 1 which is not completely explored contains exactly one robot744

performing a DFS-like traversal of the sub-tree.745

We also note that we can start BFDN1(k, k, d) from any partially explored tree where746

robots are in Parallel DFS Positions as long as each robot i, which is in a position ui with747

open ancestors, gets anchored to a node vi of P [ui] such that all nodes of P (vi) are closed.748

Such a situation occurs in BFDN when a robot is performing DN moves. It is thus possible to749

start a robot in any such situation so that it will then behave similarly as in BFDN. The other750

robots see only closed nodes and thus get to the root according to Algorithm 1 where they751

get re-anchored.752
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C Divide-depth Algorithm753

Algorithm 3 Divide depth algorithm D[A(k∗, k′, d′); nteam; niter]

Require: An anchor-based exploration algorithm A(k∗, k′, d′), integers nteam ≥ k∗ and
niter ≥ 1, a partially explored tree T with k = nteamk′ robots in Parallel DFS Positions
and such that at most k∗ robots are at depth greater than 0.

Ensure: All nodes are explored and closed.
1: R← {root(T )} ▷ Set of sub-tree roots in next iteration.
2: A← {i ∈ [k] : ui ̸= root(T )} ▷ Set of robots having already progressed in T .
3: All robots are active and have root(T ) as anchor.
4: for i = 1, . . . , d/d′ do
5: ▷ Iteration i:
6: For all r ∈ R, let kr = |{i ∈ A : vi = r}| be the number of robots having progressed

in T (r).
7: Partition robots into |R| teams (Br)r∈R of k′ robots each, one per node r ∈ R:
8: each robot i ∈ A is assigned to vi,
9: for all r ∈ R, k′ − kr robots in [k] \A are assigned to r. ▷ We rely on kr ≤ k′ and
|R| ≤ nteam.

10: All robots in team Br are assigned to anchor r: we set vi ← r for all i ∈ Br \A.
11: All robots in ∪r∈RBr \A are turned to active, and move to their anchor in 2(i− 1)d′

rounds. ▷ Moves for rebalancing robots.
12: All robots in [k] \ ∪r∈RBr are turned to inactive and wait at their current position.
13: Each team associated to r ∈ R initializes independently an instance Ar(k∗, k′, d′) for

exploring T (r).
14: At any round, we let Ar denote the set of active robots among the team exploring

T (r).
15: while |∪r∈RAr| ≥ k∗ do
16: Run in parallel one round of all instances Ar(k∗, k′, d′) for r ∈ R.
17: end while
18: A← |∪r∈RAr| ▷ Overall set of active robots.
19: R← {vi : i ∈ A} ▷ Roots of sub-trees not fully explored yet.
20: Continue running instances Ar(k∗, k′, d′) of the last iteration for all r ∈ R. ▷ Running

deep.

Proof of Proposition 11. We first check that all invariants are preserved by induction on the754

iteration number i. The main argument is that all anchors are at depth i · d′ after Iteration i.755

We require that the DFS Open Coverage, Parallel DFS Positions and Partial Exploration756

invariants are satisfied by the initial positions of robots. All remaining invariants are also757

satisfied as the only initial anchor is at depth zero. Assume that all invariants are satisfied758

up to the beginning of Iteration i, and that nodes in R are at depth (i− 1)d′.759

The Inactive Depth invariant ensures that inactive robots at the end of the previous760

iteration are at depth (i− 1)d′ or less, and moving them according to Line 11 can indeed be761

done within 2(i− 1)d′ rounds. Moreover, the Open Node Coverage invariant ensures that762

all nodes at depth less than (i − 1)d′ are closed, and these movements preserve the DFS763

Open Coverage and Parallel Positions invariants. The Partial Exploration invariant is also764

preserved since these robots are not located in the sub-tree of their anchor. These (i− 1)d′
765

rounds also preserve Anchor Depth and Open Node Coverage invariants as the anchors R766
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of nodes active in the last round of the previous iteration remain their anchor, while other767

nodes are assigned to one of the anchors in R.768

The fact that robots are initially in Parallel DFS Positions in each instance Ar(k∗, k′, d′)769

for r ∈ R comes from the preservation of the DFS Open Coverage, Parallel Positions,770

and Partial Exploration invariants at the end of the previous round as the root r was the771

anchor of robots that are not located at r. Now, as all instances Ar(k∗, k′, d′) for r ∈ R772

run in disjoint sub-trees, the DFS Open Coverage, Parallel Positions, Partial Exploration,773

Anchor Depth and Open Node Coverage invariants are also preserved during the rest of the774

iteration since each Ar(k∗, k′, d′) is anchor-based. Similarly, the Inactive Depth invariant775

is satisfied as its variant in instances Ar(k∗, k′, d′) imply that inactive nodes are at depth776

(i − 1)d′ + d′ = i · d′ ≤ d at most. The Shallow Activity invariant is preserved as long as777

at least one instance Ar(k∗, k′, d′) is not running deep according to the Shallow Activity778

invariant for that instance. This means that the number of overall active robots can drop779

below k∗ only when all instances are running deep, implying that all anchors are then at780

depth (i− 1)d′ + d′ = i · d′. Note that the Open Node Coverage invariant then implies that781

all open nodes are in the sub-trees rooted at the anchors of the robots that were active in the782

last round. The exploration can thus be reduced to these at most k∗ sub-trees as claimed in783

the description of the divide depth functor.784

Finally, the algorithm starts running deep only when all anchors are at depth d and are785

all closed. This can happen only towards the end of the last iteration when all instances786

are running deep. The reason is that if an instance is not running deep, it has at least k∗
787

active robots by the Shallow Activity invariant and the termination condition of the inner788

while loop at Line 15 is not met. The Deep Activity invariant then follows from the fact789

that instances are running in pairwise disjoint sub-trees and all satisfy the Deep Activity790

invariant.791

This completes the proof that D[A(k∗, k′, d′); nteam; niter] is correct and that it is an792

anchor-based exploration algorithm.793

The proof for f -shallow efficiency is given in Section 5. ◀794
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